Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(10)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37846039

RESUMO

MOTIVATION: Coincidence of Convergent Amino Acid Substitutions (CAAS) with phenotypic convergences allow pinpointing genes and even individual mutations that are likely to be associated with trait variation within their phylogenetic context. Such findings can provide useful insights into the genetic architecture of complex phenotypes. RESULTS: Here we introduce CAAStools, a set of bioinformatics tools to identify and validate CAAS in orthologous protein alignments for predefined groups of species representing the phenotypic values targeted by the user. AVAILABILITY AND IMPLEMENTATION: CAAStools source code is available at http://github.com/linudz/caastools, along with documentation and examples.


Assuntos
Biologia Computacional , Software , Filogenia , Substituição de Aminoácidos , Documentação
3.
Cell ; 179(1): 180-192.e10, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539495

RESUMO

Denisovans are an extinct group of humans whose morphology remains unknown. Here, we present a method for reconstructing skeletal morphology using DNA methylation patterns. Our method is based on linking unidirectional methylation changes to loss-of-function phenotypes. We tested performance by reconstructing Neanderthal and chimpanzee skeletal morphologies and obtained >85% precision in identifying divergent traits. We then applied this method to the Denisovan and offer a putative morphological profile. We suggest that Denisovans likely shared with Neanderthals traits such as an elongated face and a wide pelvis. We also identify Denisovan-derived changes, such as an increased dental arch and lateral cranial expansion. Our predictions match the only morphologically informative Denisovan bone to date, as well as the Xuchang skull, which was suggested by some to be a Denisovan. We conclude that DNA methylation can be used to reconstruct anatomical features, including some that do not survive in the fossil record.


Assuntos
Metilação de DNA/genética , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/genética , Pan troglodytes/anatomia & histologia , Pan troglodytes/genética , Fenótipo , Animais , Sequência de Bases , Bases de Dados Genéticas , Extinção Biológica , Fósseis , Genoma Humano/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Esqueleto , Crânio
4.
Nat Rev Genet ; 14(4): 249-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23458856

RESUMO

Co-evolution is a fundamental component of the theory of evolution and is essential for understanding the relationships between species in complex ecological networks. A wide range of co-evolution-inspired computational methods has been designed to predict molecular interactions, but it is only recently that important advances have been made. Breakthroughs in the handling of phylogenetic information and in disentangling indirect relationships have resulted in an improved capacity to predict interactions between proteins and contacts between different protein residues. Here, we review the main co-evolution-based computational approaches, their theoretical basis, potential applications and foreseeable developments.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , Animais , Humanos , Modelos Genéticos , Modelos Moleculares , Mutação , Filogenia , Proteínas/classificação
5.
Bioinformatics ; 28(9): 1202-8, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22399677

RESUMO

MOTIVATION: Determining the interaction partners among protein/domain families poses hard computational problems, in particular in the presence of paralogous proteins. Available approaches aim to identify interaction partners among protein/domain families through maximizing the similarity between trimmed versions of their phylogenetic trees. Since maximization of any natural similarity score is computationally difficult, many approaches employ heuristics to evaluate the distance matrices corresponding to the tree topologies in question. In this article, we devise an efficient deterministic algorithm which directly maximizes the similarity between two leaf labeled trees with edge lengths, obtaining a score-optimal alignment of the two trees in question. RESULTS: Our algorithm is significantly faster than those methods based on distance matrix comparison: 1 min on a single processor versus 730 h on a supercomputer. Furthermore, we outperform the current state-of-the-art exhaustive search approach in terms of precision, while incurring acceptable losses in recall. AVAILABILITY: A C implementation of the method demonstrated in this article is available at http://compbio.cs.sfu.ca/mirrort.htm


Assuntos
Algoritmos , Filogenia , Proteínas/genética , Animais , Humanos , Estrutura Terciária de Proteína , Proteínas/química , Software
6.
PLoS One ; 7(3): e31813, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427808

RESUMO

The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation it is difficult to obtain a complete description of its molecular composition. We have implemented an integrated computational approach to characterize novel human spindle components and have analysed in detail the individual candidates predicted to be spindle proteins, as well as the network of predicted relations connecting known and putative spindle proteins. The subsequent experimental validation of a number of predicted novel proteins confirmed not only their association with the spindle apparatus but also their role in mitosis. We found that 75% of our tested proteins are localizing to the spindle apparatus compared to a success rate of 35% when expert knowledge alone was used. We compare our results to the previously published MitoCheck study and see that our approach does validate some findings by this consortium. Further, we predict so-called "hidden spindle hub", proteins whose network of interactions is still poorly characterised by experimental means and which are thought to influence the functionality of the mitotic spindle on a large scale. Our analyses suggest that we are still far from knowing the complete repertoire of functionally important components of the human spindle network. Combining integrated bio-computational approaches and single gene experimental follow-ups could be key to exploring the still hidden regions of the human spindle system.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Biologia Computacional/métodos , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Fuso Acromático/metabolismo , Mineração de Dados , Bases de Dados de Proteínas , Células HeLa , Humanos , Microscopia de Fluorescência , Plasmídeos/genética , Estrutura Terciária de Proteína , PubMed , RNA Interferente Pequeno/genética , Sensibilidade e Especificidade , Transfecção
7.
Nucleic Acids Res ; 34(Web Server issue): W110-5, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16844971

RESUMO

The TreeDet (Tree Determinant) Server is the first release of a system designed to integrate results from methods that predict functional sites in protein families. These methods take into account the relation between sequence conservation and evolutionary importance. TreeDet fully analyses the space of protein sequences in either user-uploaded or automatically generated multiple sequence alignments. The methods implemented in the server represent three main classes of methods for the detection of family-dependent conserved positions, a tree-based method, a correlation based method and a method that employs a principal component analyses coupled to a cluster algorithm. An additional method is provided to highlight the reliability of the position in the alignments. The server is available at http://www.pdg.cnb.uam.es/servers/treedet.


Assuntos
Alinhamento de Sequência/métodos , Análise de Sequência de Proteína , Software , Sequência de Aminoácidos , Sequência Conservada , Internet , Proteínas/classificação , Interface Usuário-Computador
8.
Bioinformatics ; 21 Suppl 2: ii13-8, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16204091

RESUMO

Solving relevant biological problems requires answering complex questions. Addressing such questions traditionally implied the design of time-consuming experimental procedures which most of the time are not accessible to average-sized laboratories. The current trend is to move towards a multidisciplinary approach integrating both theoretical knowledge and experimental work. This combination creates a powerful tool for shedding light on biological problems. To illustrate this concept, we present here a descriptive example of where computational methods were shown to be a key aspect in detecting crucial players in an important biological problem: the dimerization of chemokine receptors. Using evolutionary based sequence analysis in combination with structural predictions two CCR5 residues were selected as important for dimerization and further validated experimentally. The experimental validation of computational procedures demonstrated here provides a wealth of valuable information not obtainable by any of the individual approaches alone.


Assuntos
Aminoácidos/química , Modelos Químicos , Modelos Imunológicos , Receptores CCR5/química , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Aminoácidos/imunologia , Sítios de Ligação , Dimerização , Dados de Sequência Molecular , Ligação Proteica , Receptores CCR5/imunologia
9.
Proteins ; 60(2): 275-80, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15981273

RESUMO

We have developed methods for the extraction of evolutionary information from multiple sequence alignments for use in the study of the evolution of protein interaction networks and in the prediction of protein interaction. For Rounds 3, 4, and 5 of the CAPRI experiment, we used scores derived from the analysis of multiple sequence alignments to submit predictions for 7 of the 12 targets. Our docking models were generated with Hex and GRAMM, but all our predictions were selected using methods based on multiple sequence alignments and on the available experimental evidence. With this approach, we were able to predict acceptable level models for 4 of the targets, and for a fifth target, we located the residues involved in the binding surface. Here we detail our successes and highlight several of the limitations and problems that we faced while dealing with particular docking cases.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Algoritmos , Animais , Simulação por Computador , Bases de Dados de Proteínas , Dimerização , Humanos , Substâncias Macromoleculares , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Mutação , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Software , Eletricidade Estática , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...